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A method is presented for a numerical solution of the multichannel scattering problem with
a large number of closed channels ( ~300). The scattering problem is reduced to a nonlinear
functional equation which is subsequently solved using the continuous analog of Newton
method. The efficiency of the approach is demonstrated by solving the one-channel scattering
problem for which an analytic solution exists and a muitichannel problem arising in the con-
sideration of inelastic collisions in a three-body system. In particular, the scattering cross sec-
tions of tritium mesic atoms in the singlet and triplet states of the hyperfine structure
including the spin—flip cross sections are calculated.  © 1986 Academic Press, Inc.

1. INTRODUCTION

Recently [1], a method has been proposed for solving the Sturm-Liouville
singular problem for a large system of differential equations with the use of a con-
tinuous analog of Newton method [2-47]. Problems of this type arise in many fields
of physics, in particular, in calculating the binding energies of a three-body system
with Coulomb interaction [5]." In the description collisions of composite particles
one encounters the problems of finding the states of the continuous spectrum of the
Sturm-Liouville operator. Often, in such calculations presence of many coupled
reaction channcls and influence of the closed channels on the reaction cross section
have to be taken into account [6, 7]. This leads to the necessity of solving a large
number of equations and, thereby, to a significant complication of the com-
putational procedure [8,9].

In this paper an algorithm is developed for a numerical solution of the multi-
channel-scattering problem with a large number of closed channels (~300). The
algorithm is based on the known idea [10] developed earlier for the bound states
[ 1], according to which the initial problem is represented by a nonlinear functional
equation which is subsequently solved by a continuous analog of Newton method.

' An example is calculation of the energy levels of a mesic molecule, the system composed of two
nuclei and g-meson [S].
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One possible way to extend this approach to the scattering states was proposed in
[117, where the scattering problem was formulated as an eigenvalue problem and
calculations for the two-channel case were presented.? In [ 137 a solution for a large
number of closed channels (~300) and one open channel has been given as a
solution of the Sturm—Liouville problem with zero boundary conditions. In this
paper the ideas of [11, 137 are applied to the solution of the multichannel problem
with an arbitrary number of open channels.

The method of finding the states of the continuous spectrum of the Schrodinger
equation is expounded in Section 2 and illustrated in Section 3 on the example of
the one-channel problem for which an analytic solution exists. A generalization of
the method to the multichannel case is presented in Section 4. Its applicability to
inelastic collisions involving three charged particles which exemplifies the basic
characteristics of the multichannel scattering is demonstrated in Section 5 by
calculating the inelastic cross sections for tritium mesic atoms on nuclei. These cross
sections are needed for a quantitative description of the kinetics of the muon-
catalyzed fusion chain [14].

2. SOLUTION OF THE ONE-CHANNEL SCATTERING PROBLEM

For finite potentials U(R) for which the eigenvalue problem is correctly posed
(limg_, .., U(R) R*=0) the Schrodinger equation

1 @ JJ+1)
M dR® 2MR?

T U(R)] V(R) = s3(R) (1)

may contain a discrete (possibly infinite) set of bound states (¢ <0) for which the
wave functions behave as

Vel R) =5 BTN YR e Y 720 F (La)

R—-0 R—

and a set of states of the continuous spectrum (¢ > 0) with the asymptotic behavior

YA R) —— RV, yg,(R>—»sin<kR—32‘-J+6,<e>> (1.b)

R—>

where k?=2Me, J is the angular momentum, and §,(¢), the scattering phase for
potential U(R). For bound states the problem of finding a solution {y,,¢,} of
Eq. (1), satisfying conditions (1.a) can be represented by the nonlinear functional
equation for z= {y,¢} e C*>x R

2 The method for solving the Schrddinger radial equation for the continuous spectrum as a bound-
state problem has been known for a long time (see, e.g., [12]).
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The first of Egs. (2) is equivalent to Eq. (1). The second and the third ones reflect
the boundary condition (1.a), the latter being given by the asymptotic behavior of
y( ) (e.g, fi=1, f,=./—2Me). The last equation is the normalization condition

(3. y)=|& y*(R)dR=1. Having stated the problem in the form of Eq.(2) it is
convenient to apply the continuous analog of Newton method. (We refer here to
the arguments of [15]). The root of Eq. (2), z, = { y.¢&,}, can be found by solving
the functional evolution equation

@ (z(1) 2'(1) = —o(z(1}) 3)

where a subsidiary continuous parameter 0 << oc is introduced [3] and the
initial condition reads z(0)=z,. Above, ¢. is the Fresche derivative [16] of
operator <p, 40 ={ )y, & is the initial approximation to the solution we are looking
for, and z'(¢) = {dy/dt, de/dt} = {V, u}. Tt has been shown [2, 37 that if operator ¢
is smooth in the vicinity of the isolated solution then
lim [z, —z(t}]| =0.

[ — o

4)

o

The evolution equation (3} has been used to construct different iteration schemes
for finding solutions of Eq. (2) [1, 10, 11, 17] starting from initial spproximation
Zg-

Let us now turn to the scattering states. Conventionally, the solution of the scat-
tering problem consists in finding the scattering phase d(k) at a given energy e =¢,
{(k=k,). Below, we develop an approach analogous to the one presented above for
the bound states. As before, let us write a nonlinear functional equation ¢{z)=70
with z= { y, ¢, 8}, the root of which, z, = {y,, ¢,, 6.} coincides with the solution
of the initial problem at ¢=¢, =k3 /2M The boundary condition ¢4z} =0 reflects
now the asymptotic behavior (1 b). Then, in analogy to Eq. (2)™:

o
L
N

d
@s(z)= [sin(kR + 6);13 v—kcos(kR+d) y]

R=Ry 0.

3 The boundary condition (5) contains no singularities for any ¢ > 0 and, thercfore, it is convenient for
numerical calculation. For simplicity we restrict outselves, here, to J=0. For J>0 more accurate
calculations require the replacements

sin(kR — (m/2)J) j,(kR)%
cos(kR— (m/21){ ~ [n kR |
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Since the dimensionality of the space of the independent variables has now
increased z={y,e} - {y,6 6} e C*x Rx R, Eq. (2) has to be supplemented with
one more independent condition: ¢s(z)=0 possessing a common root with the
other equations. The modified operator ¢ should also satisfy the smoothness
requirement leading to Eq. (4). Let us take ¢s(z) in the form* of a scalar product:

d2
0s(2) = g -+ (= VLR 7 ) = ©)

Then, the root of the nonlinear functional equation

& R
o(z)=0,= Wyﬂk—U)y =0

=@y= Ylr=o =0
d
=@3= |:f167§)’+f2y:|R=Rm =0 (7)
=@4= (y, y)-1 =0
d2
=¢5=<y,37{3y+(ki—U)y>=0

is a solution to the scattering problem (1), (1.b) at the given k> =k% =2Me,.

It should be noticed that the choice (6) of the form of condition ¢(z) =0 is not
unique. The same concerns the normalization condition of the wave function
¢4(z)=0. The influence of changing the form of ¢s on convergence of the iteration
process of finding the solution of the scattering problem will be discussed in the
next section.

Let us construct the iteration scheme for solving Eq. (7) following the precedure
used above for the bound states (2) [1]. The evolution equation (3) (with ¢
defined by (7)) will be solved using the Euler method on difference net with the step
of integration t,=¢,,—t,=1:

q)/z,,(zn) = _(P(Zn) (8)
Zn+l =Zn+Tn Azn: {yn+rn Vna k;21+rnl't'1'9 5,,+Tn,u’21}- (9)
Let us represent the iteration correction V,(R) to y,(R) as
Vi(R) = —y,(R) + pjv,(R) + p30,(R). (10)
“In [18] a similar functional with the standard normalization conditions was used to obtain a

bilateral convergence of the Newton iteration process for finding the discrete states of the Schrodinger
equation.
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Then, the boundary-value problems for v,(R) and §,(R) respectively read

2U +(k—— )nZ—yn

dR
Unlr=0=0 (1ia)
d rand o
[:flan+f2vn}R_Rm_ I:a)\,ndRyn—*—a}.,n Ya Rz,
n=k?

2

d
2 Ont (k2= V), =0
(11.b)

Uulr=0=0

d . N o d />
d, — S e R .
[ ldRUn+fZUn:|R=Rm [55,, a’Ry"+85,,y" Re — &,

Upon substituting ¥, given by (10) into the last two equations of (8)

I5 G,
P4 V.= —o,, Qs

B 0y,

Vn = —Qs

one obtains a system of algebraic equations for iteration corrections uj and u%:

&y 1} + ity = b )
L
ay pi+agnp; =055
where

al;=(Vu, Un) @ =(Vn> Tn)s
1= (Y 0 + (K = U),) + (v, yi + (K —U) y,)
@ = (Y, By + (k3 — U)B,) + (B, yr + (K3 — U) y,),
Bi=31+(yw yu))  D3=(yu yi+ (ki =TU)y,).

a5, =

Formulae (9)-(12) represent the classical Newton—Kantorovich [3, 167 solution of
Eq. (7).

The above approach is not unique and other ways of constructing the iteration
scheme for the scattering problem (7) on basis of the evolution equation {3) can be
devised. For example, the step of integration, 7,, can be changed in the course of
iteration, which may essentially extend the range of convergence of the procedure.
Also, replacing ¢, (z,) in (8) by ¢ (z,) may significantly decrease the time of com-
putation [1].
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3. SeecirFic FEATURES OF THE CALCULATIONAL SCHEME

The approach described in the previous section will be illustrated by solving the
Schrédinger equation for the Morse potential

U(R)= D [e™(R=R0)_2. p~(R=Ro)] (13)

for which the analytic solution reads

6_5/2 . .
Yi(R)=— [e“E~ F(—6+1—is, 1 —2is, &)
—e R F(—0 444105, 14 2is,£)] =~ sin(kR—kRy— (k/a)1n 20+ )
R—

(13.a)
w=arg I'(1 +2is)+arg I'(—d+4—is), s=kja, & =./2MD/a.

Table I and Fig. 1 illustrate convergence of the iteration procedure from various
initial approximations for the following values of the parameters: D=0.104,
0=0.67, Ry=2.09, M =8.876. Convergence was controlled by the magnitudes of
4,=lo(z,)|, u}, and p%, and iteration ended when max{u?, u4, 4,}<107° The
boundary-value problems (11) were solved using the finite-difference approximation
of a order of accuracy of ~O(h?) (h is a step of integrations) and applying the
alternating implicit algorithm. The accuracy of calculations for the chosen difference
net (see TableI) is about 10° — 1072 If necessary, accuracy can be improved by
extrapolating the obtained values to £ — 0. From the calculations performed to
several difference nets it follows that the errors of the numerical solutions decrease
quadratically with decreasing step of integration. As exemplified in the Table for
k =0.08 the method is rather stable to the choice of the initial approximation.

In the considered approach the convergence of the iteration pocedure can be
improved either by choosing a better initial approximation to z, or by
appropriately changing the form of ¢s. To illustrate this point Fig. 1 show several
trajectories of z projected onto the {k, d}-plane. For instance, if ¢ps=k*—k% =0,
the problem reduces to a standard formulation in which y, and d, are found for a
given value of k=4, . Thus, by changing the condition ¢s(z) =0 one changes the
properties of operator ¢ defined by Eq.(2) where, now ¢,(z)=(d*/dR*)y+
(k3 —U)y, fi=sin(k, R, +6),and f, = —k, cos(k, R,,+ 0). However, construction
of the iteration procedure in this case is a separate problem which is outside the
scope of the present consideration.

On the other hand if ¢s=0J— 6, =0 the points Z, move along the straight line
trajectory: 6 =4,. The scattering problem (7) is then reduced to Eq. (2), where
Si=sin(kR,, +9,), f= —k cos(kR,,+J,) and the solution can be found as in Sec-
tion 2 using the continuous analog of Newton method. This choice for ¢s
corresponds to stating the scattering problem as an eigenvalue problem in which k2
is found for a given 6 = J,,. Such an approach has been proposed and implemented
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Fic. 1. lustration for convergence of the iteration procedure of finding the solution z,_ of the
scattering problem (7) for different choices of ;.

for the two-channel case in [11], where its range of convergence has been studied
and possible generalizations to the multichannel problem have been pointed out.
Yet another method for solving the scattering problem as an eigenvalue problem
has been considered in [13], where the potential: U(R), Re [0, co) has been
replaced by a potential with a infinite wall at R= R, ( »(R,,)=0) giving rise to a

discrete, R,-dependent spectrum of eigenvalues k2, a = 1, 2,.... The respective eigen-

functions y,(R) contain information about the scattering phases § of Egs. (1) and
(1.b). The corresponding iteration scheme can be obtained if

@s(z)=0+kR,,—na=0.

(14)
Indeed, in this case the boundary condition (5) reads ¢s(z)= y(R,)=0, and
problem (7) becomes the Sturm—Liouville problem (2), with f; =0 and f>,=1. It is
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therefore sufficient to calculate the scattering phase only once, after the procedure
of solving Eq. (2) has converged (k2 -, _, ., k2) using the formula §,= &, R, + na.
According to (14), in the course of iterations the points Z'n can move only along
the straight line, 6, = —k,R,, + ar as illustrated in Fig. 1. The slope of this line, R,
which is the cut-off in integration of the Schrodinger equation determines the
required value of k.° This approach has been applied in [137] to the multichannel
scattering problem with one open and many (~ 300) closed channels.

The discussed examples indicate several possibilities of improving convergence of
the proposed method and increasing its stability to the choice of the initial
approximation by changing the form of ¢s. Alternatively, the properties of the
operator ¢ can be improved by an appropriate choice of the normalization con-
dition @4(z) =0 (see, e.g, [11, 18]).

4. SOLUTION OF THE MULTICHANNEL SCATTERING PROBLEM

Let us now consider the multichannel problem in the approach developed in Sec-
tion 2. It will be shown below that with the choice of condition ¢5;=0 given by
Eq. (6) this approach can be easily extended to the multichannel case.

Consider an N-channel problem with s-open channels stated as follows: At a
given collision energy ¢ > 0 one should find s nontrivial solutions of the system of &
differential equations

a JI+1) N
@1l Yi)=[zﬁiyi+2M<8*Ei—m—> yi]_gU[jyj:O (15.a)
The solutions should be regular at R=0,
@28 yi)=yilr_o=0 (15.b)

and have the asymptotic behavior at R —
YR~ j,(kRY—7AkR)T in open channels (i < s)

. (16)
~exp{—lk,| R} in closed channels (i > s).

Additionally the scattering S-matrix has to be found related to the real T matrix by
S=(1+iT)(1—iT) !
where T=1limg ., T(e, R).®

* Naturally, R, € [R,,, ), where the asymptotic condition y(R,,)= r> R, SIN(KR +§) is valid.
¢ This formulation of the problem has been presented in [11].
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In the N-channel problem (15) and (16) the complete set of solutions

y={}=
POy

is an N xs matrix, in which the number of component of a vector-column (the
number of the reaction channel) runs over i =1, 2,..., N, and the solution index over
v=1,2,..,s. The matrix T= {7,,} is real symmetric, whereas S= {S¥) +iS{!'} is a
complex sx s matrix. The notation used in Egs. (15) is: M—the reduced mass,
k—the corresponding momentum in the ith channel, k?=2M(¢— E;)>0 in open
channels (i <s) and k7 <0 in the closed ones (i >s), U;(R)—the potentials with the
asymptotic behavior’

R’U R)—>const. for R—0
UjR)—0 for R- 0.
Energy £=0 corresponds, here, to the threshold of the lower channel E,. The

diagonal matrices j, and 7, are expressed in terms of the Riccati-Bessel spherical
functions

Ak RY = {j(k,R) 8.}, ity (k; R) = {n,(k,R) 6,,}.

The asymptotic formulae for these functions give the asymptotic behavior of the
solutions of system (15.a) in open channels (i <s) which is

R — oo

o farn (i Zovon)] )

where

Al(v) = 511' + (1 - 5iv) N/ kv/k,' Z,'V(S) COs 5(‘))(8)
50V = 60e) S 4 (21— 8,),  SU(e) =aretg 1,(c)

and o,, is the Kronecker symbol.

Let us represent the multichannel scattering problem (15), (16) by s functional
equations ¢®(z)=0 analogous to Eq. (7). From the asymptotic equality for
R=R, —

d d
iR yz(V)/yEV)‘R:Rm:ﬁ J}g‘;?/ygy?lR:Rm

"In the next section we consider an example differing from the standard formulation
(Uy(R) = r_, », const.), admitting, nevertheless, a correct formulation of the scattering problem [13, 20].
However, in this case, taking into account strong channel coupling in the asymptotic region complicates
the construction of the computational procedure.
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where functions { y%)} are defined by (17) one obtains the boundary condition for
the scattering problem in the following form

o0z, 3) = [f&” % y® +f§”y”’1 N (15¢)
where a matrix notation is introduced
Fi(e, 69 = {f1},;={0(i—5)[d,sin(k,R—(n/2)J + 5'")
+(1—46,) cos(k, R— (m/2)]) ]+ (1 —6(i—5))} 9,
FUe, 8 = {f9) ;= {0(i—s)[ —0,, cos(k;R— (1/2)] + 57)
+(1—46,) sin(k,R— (n/2)J)k,+ (1 —0(i —s))lk/|}
and where
Bi—s)=1, i<s
=0, i>s.

In this formulation the boundary condition @{"(e, §*’)=0 for the vth vector-
column of solutions of Eq. (15)

contains in an explicit form only one parameter 6"'(¢) = arctg ¢,,(¢) for the sought
matrix 7(¢). This allows one to formulate the multichannel scattering problem in
terms of s functional equations ¢(z)=0 analogous to (7) for unknowns
Z={y", & 8"}. Indeed, if one defines in analogy to Section 2:

ePy)=(y,y)—-1=0 (15.d)

, & L JU+1) .
wé)(s,y)=<y,2};y+<k;— = —U)y>:0 {(15.e)

one obtains s nonlinear functional equations ¢"(z)=0, v=1, 2,... 5, in which the
components ¢ (I=1,2,.,5) are given by Egs. (15). Here U={U,(R)} is the
matrix of potentials in (15.a), k3, = {2M - (¢, — E,) J,;}, is a fixed diagonal matrix
(the same for all v), and the scalar product is defined by (y,y)=
TN & [y™(R)]* dR. The equations can be considered separately because they
are not coupled except for the requirement that parameter ¢, (common energy in
all channels) is the same for all v.

It can be easily seen, that by determining the roots of these equations, z, =
{y0), e,, 807}, solves, at the same time, the multichannel scattering problem for a
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given collision energy e=e¢,, fixed by conditions (15.e). Le., one obtains the
corresponding eigenfunctions j,(e,, R) and scattering parameters 55 (¢, ).
Then, using the asymptotic formulae (17) the T-matrix at e =¢,, is given by

T={t,(e)}

mtgdW = f_ YR, sin(k, R, + 8 — (1/2)J])
w=1g s v ) vV)(Rm) cOS 5(") COS(kiRm_(n/z)J):

(19)

where k;=./2M - |e, — E.

The solution of equations ¢©)(z)=0, follows immediately from the scheme
presented in Section 2; formulae (9)-(12) should be used with the following
replacements:

U-U, fi=>f oo f9, p, = yWov, v, 5, >3

where the matrices U, f{", and f¢" have been determined above and y{", v{"), and
¥ are now N-dimensional vector functions.

Having calculated the S-matrix S=(1+iT)(1—iT)~' one can determine the
physical characteristics of the considered collision process:

olk) = (4n/k7)(2T + 1)(1 = 18,]%). (20)

Here, o,(k;) is the elastic cross section in the ith channel, k;=./2M - |e — E/| and
¢—E, are the corresponding momentum and collision energy respectively and
o,,(k,) for i#v are the cross sections for transitions from the ith to the vth channel.

5. NUMERICAL EXAMPLE

Let us demonstrate the performance of the proposed method using as example
the problem of slow collisions in a three-body system. Such collisions reflect the
basic characteristics of the multichannel scattering [217]. This problem arises, for
instance, in the description of various mesoatomic processes [5,22] occurring in
mixtures of hydrogen isotopes. In particular, the kinetic formulae describing the p-
catalysis of nuclear fusion in such mixtures contain as parameters the cross sections
for collisions of tritium mesic atoms in various states of the hyperfine structure with
trittum nuclei. Both elastic and spin-flip collisions are important. Let us introduce
the following notation for the respective cross sections o ,(¢e):

(1) + 1 —"= (1) +1
Cabs Gba (21)

w(t) +t—— (1) +1
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In the adiabatic representation of the three-body problem [5] reactions (21) are
described by the system of Egs. (15.2), with the effective potentials

Uiiias Uiio
UI(R) — ( iaja iaj )
/ Uibja’ Uibjb
defined in [23, 13], and with the wave functions of the relative motion of nuclei
vu{R) and y,(R), which in the asymptotic region R — oo correspond respectively
to the subsystems ru(t])+¢ (a) and ru(T7)+1¢ (b).
The problem is characterized by strong coupling of channels in the limit

AEz'aja O )

R U AR)———
0 Uy(R) < 0 AEy,

R—
Its presence does not prevent a correct formulation of the scattering problem [ 137,
it leads, however, to a rather complicated boundary condition at R=R,,. Let us
consider the region of low collision energies (e<E2a) where only
tidT)) 2 tu,(17) spin-flip transitions are allowed. In this case (s =1, 2) the boun-
dary conditions ¢{ =0 are given by Eq. (15.b), and matrices of coefficients /(") and
F assume the form

s=1
(e, a=F"6, i=1la, 2a,.,.N—landv=lg
£ 6(V’)J Ffl)éj = 1a, 2 N —1and 1
=0y, i=1b,2b,. N
. (22)
{(f9e, M)}, = —ﬁFﬁ” Sy, i=1la,2a,..,N—landv=1la
=lk{ &, i=15b,2b,., N
where

F)=0(i—s)[d,, sin(k; R — (7/2)J + 8V) + (1 = §,,) cos(k, R — (n/2)J)]
+ (1 —0(i—5))[6, cos(k; R — (r/2)J + 6V)— (1 = 6,,) sin(k; R — (n/2)J)]
§=2

d .
(06 60}y = PP 8, {186 80y = =2 P03,

where = 1a, 15, 2a,..., N and v=1a, 15.

In the derivation of these formulae only the leading terms of the asymptotic
expansions of y,(R) and y,(R) [20] were retained. However, to increase accuracy,
in the actual numerical calculations, terms proportional to 1/R have been also
included.
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Another feature is the necessity of taking into account a large number of closed
channels { ~300) which significantly influence the magnitude of the cross sections
(21 [131].

Figure 2 presents the calculated S-wave cross sections (21) and Fig 3 the
corresponding 7-matrix elements and demonstrates the dependence on the number
of solved equations N of the system (15.a). Number N =2 corresponds to inclusion
of one shell of the discrete spectrum of the adiabatic basis, N =20 to three such
shells and N = N_,, = 260 to three shell of discrete and four shells of the continuous
spectrum. The structure of the matrix of potentials in Eqg.{15.a) used in the
calculations is as in [1]. Equation (15) for N=20 was solved using the
calculational procedure given by Egs. {9)-(12). As the numerical method is suf-
ficiently stable to the choice of the initial approximation, the latter has been taken
in a simple form y,,= yo-9,, where y,(R) corresponds to the one-channel case
(Sect. 3). The solution of (15) at N =20 was used as an initial approximation for
N = Npnax- In this case, ¢/ (z,) in Eq. (8) was replaced by ¢/ (z,) which, as men-
tioned in Section 2, led to significant shortening of computation time.

The achieved accuracy of the calculations which is about ~5% is determined by
the approximation order of the difference net, by the cut-off value of R (R,), and
by the neglected contributions from the higher states of the adiabatic basic. In the

o 0.2 03 0.4 E,eV

F16. 2. Calculated cross sections for reactions (21), o, J=0. The curves correspond to taking into

account NV =2, 20 and 260 equations in the system of equations (15.a). Calculations were carried out on
difference net with 330 nodes with step: 0.1 (0.1) 20 (1) 150,
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F16. 3. Calculated elements of T-matrix, ¥, N defined as in F ig. 2.

g

calculations finite difference approximation of the order [[@{" — ™|~ O(h?) was
used, however, if necessary the algorithm can be modified to admit accuracy up to
~O(h*) [24]. The contribution from the neglected states of the adiabatic basis
(N—o0) can be estimated as in [25]. The results for N =2 coincide within a
relative accuracy 107°—10"“, throughout the whole energy region under con-
sideration, with the results obtained using the phase-function method [267 and, for
energies below threshold ¢ <AEY", with the results of [13], where s=1 and
N~ 300.

As is seen in Fig. 2, the cross sections o4e) vary significantly with energy at
¢<0.3eV. We note also the threshold singularity at e = AE" =0.241 eV, that is,
clearly pronounced and surviving as N — co.

6. CONCLUSION

The method developed above enables one to solve the multichannel scattering
problem with a large number of closed channels ( ~300). The scattering problem is

581/65/1-2
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represented in the form of a nonlinear equation which can be solved using the con-
tinuous analog of Newton method. The latter has been verified in many
applications, and conditions of its local convergence have been theoretically
examined [3].

An important peculiarity of the given approach is, in our opinion, that it allows
us to solve the multichannel scattering problem with a strong, possibly long-range,
coupling of channels without transforming the initial system of equations into a
form suitable for numerical integration [6, 8]. It also does not require a particular
organization of calculation in the asymptotic region near singularity R,, — c0 [26],
unlike the standard straightforward integration technique. All this is essential for
numerical solution of the multichennel scattering problem with a large number of
closed channels and long-range potentials.

The method provides a common description of different phenomena (resonances,
threshold behaviour, Ramsauer effect, etc.) in a wide range of energy and opens a
possibility of examining the influence of the closed channels on their physical
characteristics. It can be used most effectively at low collision energies where only a
few partial waves contribute. The calculations performed for inelastic collisions
involving three charged particles demonstrate the applicability of the method.

The author is deeply indebted to Professors L. 1. Ponomarev and I. V. Puzymin
for stimulating discussions and guidance, and to his colleagues, Drs. M. P. Faifman,
A. Gula, M. Kaschiev, L. 1. Men’shikov, L. N. Somov, S.1. Vinitsky, and J. Woz-
niak for helpful conversations and assistance in completion of this work.
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