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A method is presented for a numerical solution of the multichannel scattering problem with 
a large number of closed channels ( - 300). The scattering problem is reduced to a nonlinear 
functional equation which is subsequently solved using the continuous analog of Newton 
method. The efficiency of the approach is demonstrated by solving the one-channel scattering 
problem for which an analytic solution exists and a multichannel problem arising in the con- 
sideration of inelastic collisions in a three-body system. In particular, the scattering cross sec- 
tions of tritium mesic atoms in the singlet and triplet states of the hyperline structure 
including the spin-flip cross sections are calculated. C 1986 Academic Press, Inc. 

1. INTR~DUCTIOW 

Recently Cl], a method has been proposed for solving the Sturm-Liouville 
singular problem for a large system of differential equations with the use of a con- 
tinuous analog of Newton method [2-41. Problems of this type arise in many fields 
of physics, in particular, in calculating the binding energies of a three-body system 
with Coulomb interaction [S].’ In the description collisions of composite particles 
one encounters the problems of finding the states of the continuous spectrum of the 
Sturm~Liouville operator. Often, in such calculations presence of many coupled 
reaction channels and influence of the closed channels on the reaction cross section 
have to be taken into account 16, 71. This leads to the necessity of solving a large 
number of equations and, thereby, to a significant complication of the corn- 
putational procedure [IS, 91. 

In this paper an algorithm is developed for a numerical solution of the multi- 

channel-scattering problem with a large number of closed channels (-300). The 
algorithm is based on the known idea [lo] developed earlier for the bound states 
[I], according to which the initial problem is represented by a nonlinear functional 
equation which is subsequently solved by a continuous analog of Newton method. 

’ An example is calculation of the energy levels of a mesic molecule, the system composed of two 
nuclei and At-meson 151. 
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2 V. S. MELEZHIK 

One possible way to extend this approach to the scattering states was proposed in 
[ 111, where the scattering problem was formulated as an eigenvalue problem and 
calculations for the two-channel case were presented.2 In [ 131 a solution for a large 
number of closed channels (N 300) and one open channel has been given as a 
solution of the Sturm-Liouville problem with zero boundary conditions. In this 
paper the ideas of [ 11, 131 are applied to the solution of the multichannel problem 
with an arbitrary number of open channels. 

The method of finding the states of the continuous spectrum of the Schrodinger 
equation is expounded in Section 2 and illustrated in Section 3 on the example of 
the one-channel problem for which an analytic solution exists. A generalization of 
the method to the multichannel case is presented in Section 4. Its applicability to 
inelastic collisions involving three charged particles which exemplifies the basic 
characteristics of the multichannel scattering is demonstrated in Section 5 by 
calculating the inelastic cross sections for tritium mesic atoms on nuclei. These cross 
sections are needed for a quantitative description of the kinetics of the muon- 
catalyzed fusion chain [14]. 

2. SOLUTION OF THE ONE-CHANNEL SCATTERING PROBLEM 

For finite potentials U(R) for which the eigenvalue problem is correctly posed 
(lim R _ ,,m U(R) R2 = 0) the Schrbdinger equation 

1 d2 J(J+ 1) 
2M dR2 2MR2 + U(R) 1 Y(R) = &Y(R) 

may contain a discrete (possibly infinite) set of bound states (E < 0) for which the 
wave functions behave as 

Y,,(R) xz? RJ+’ 1 Y,J(R) R-, 
-JQZkR 

(1.4 

and a set of states of the continuous spectrum (E > 0) with the asymptotic behavior 

YEAR) xx ~Jft Y,,(R) R sin kR -5 J+ c?~(E) 
> 

(1.b) 

where k2 = 2M.5, J is the angular momentum, and 6 J(~), the scattering phase for 
potential U(R). For bound states the problem of finding a solution { y*, E*} of 
Eq. (l), satisfying conditions (1.a) can be represented by the nonlinear functional 
equationfor~={y,s}EC~xR 

ZThe method for solving the Schriidinger radial equation for the continuous spectrum as a bound- 
state problem has been known for a long time (see, e.g., 1121). 
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=(p4= (Y> Y)- 1 = 0. 

first of Eqs. (2) is equivalent to Eq. (1). The second and the third ones reflect 
oundary condition (l.a), the latter being given by the asymptotic behavior of 
(e.g., fi = 1, f2 = ,/-2MF). The last equation is the normalization con 

(J:, y)=lp y*(R) dR= 1. IIaving stated the problem in the form of Eq. (2) it is 
convenient to apply the continuous analog of Newton method. (We refer here to 
the arguments of [lS] ). The root of Eq. (2) z* = ( y,s, >, can be found by solving 
the functional evolution equation 

vXz(t)) z’(t) = -4+(t)) (31 

where a subsidiary continuous parameter 0 < f < CE is introduced [3] and the 
initial condition reads z(0) =zo. Above, cpi is the Fresche derivative 
operator 9, z0 = { y,, Q,} is the initial approximation to the solution we arc 
for, and z’(t) = (dy/dt, d&/dt} = { V, p). It has been shown [2, 3] that if operator <ip 
is smooth in the vicinity of the isolated solution then 

lim l/z* - z(f)11 = 0. (4) 
I-x 

The evolution equation (3) has been used to construct different iteration schemes 
for Ending solutions of Eq. (2) [ 1, 10, 11, 171 starting from initial a~~roximati~~ 
zo. 

Let us now turn to the scattering states. ~onve~tio~a~ly, the solution of t 
em consists in finding the scattering phase 6(k) at a given energy F = c, 
low, we develop an approach analogous to the one presented above for 

the bound states. As before, let us write a nonlinear functional equation q(z) = 0 
with z = ( y, E, 6 >, the root of which, z, = ( y.+) E.+, S,} coincides with the solution 
of the initial problem at E = E, = k$!M. The boundary condition po3(z) = 0 reflects 
now the asymptotic behavior (1.b). Then, in analogy to Eq. (2)3: 

sin(kR+d)& y--kcos(k 
R = R, = 0. 

(4) 

’ The boundary condition (5) contains no singularities for any e > 0 and, therefore, it is convenient for 
numerical calculation. For simplicity we restrict outselves, here, to J= 0. For J> 0 more accurate 
calculations require the replacements 

i 
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Since the dimensionality of the space of the independent variables has now 
increased z = { y, E} -+ { y, E, S} E C2 x R x R, Eq. (2) has to be supplemented with 
one more independent condition: (p5(z) = 0 possessing a common root with the 
other equations. The modified operator cp should also satisfy the smoothness 
requirement leading to Eq. (4). Let us take (p5(z) in the form4 of a scalar product: 

4’s(z)= 
! 

~.-&+(k:-U(R))y (6) 

Then, the root of the nonlinear functional equation 

cp(z) = ‘p1= -$Y+(k2--U)Y =o 

=(P2= YlR=Cl =o 

I 
=o 

R=R, 

=q4= (Y> Y)-1 =o 

(7) 

=ds= y,-$ y+(k:U)y)=O ( 
is a solution to the scattering problem (1) (1.b) at the given k2 = ki = 2M.5,. 

It should be noticed that the choice (6) of the form of condition (p5(z) = 0 is not 
unique. The same concerns the normalization condition of the wave function 
(p4(z) = 0. The influence of changing the form of cps on convergence of the iteration 
process of finding the solution of the scattering problem will be discussed in the 
next section. 

Let us construct the iteration scheme for solving Eq. (7) following the precedure 
used above for the bound states (2) [ 11. The evolution equation (3) (with cp 
defined by (7)) will be solved using the Euler method on difference net with the step 
of integration z, = t,, 1 - t, = 1: 

cp:,(zJ = -cp(zJ (8) 

z,+l=z,+~,dz,=(yn+~nV,,k~+z,~~,6,+z,~’;}. (9) 

Let us represent the iteration correction VJR) to yn(R) as 

V,(R) = -Y,(R) + PL;u,(R) + P%(R). (10) 

4 In [IS] a similar functional with the standard normalization conditions was used to obtain a 
bilateral convergence of the Newton iteration process for finding the discrete states of the Schriidinger 
equation. 
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Then, the boundary-value problems for v,(R) and v”,(R) res~e~t~ve~y rea 

V,lR=O=Q 

i f&.,+h] = - 
R=R, 

,%,,=ki 

(1 n.a.) 

(1 Lb) 

Upon substituting V,, given by (10) into the last two equations of (8) 

one obtains a system of algebraic equations for iteration corrections ,B; and $j: 

where 

a” - 11 -(Y,, %J, a” - 12 - (Yns CJ, 

a’;; = (Y,, Vi + (kZ, - u)V,) + (on, .Y: + (ki - U) yn) 

a’;* = ( yn, v”i + (k2, - U)iL) + (G,> yl: + (kt - u)y,), 

b;=t(l+(y,, Y,)), 4 = (y,t yi: + 6: - WY,). 

Formulae (9)-(12) represent the classical Newton-Kantorovich [3, 161 solution of 
Eq. (7). 

The above approach is not unique and other ways of constructing 
scheme for the scattering problem (7) on basis of the evolution equati 
devised. For example, the step of integration, z,, can be changed in the course of 
iteration, which may essentially extend the range of convergence of the proce 
Also, replacing c&(z,) in (8) by cp&(zO) may significantPy decrease the time of com- 
putation [ 11~ 
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3. SPECIFIC FEATURES OF THE CALCULATIONAL SCHEME 

The approach described in the previous section will be illustrated by solving the 
Schrodinger equation for the Morse potential 

,TJ(R)=D. [e-2a(R--Ro)_2.e~a(R~Ro)] (13) 

for which the analytic solution reads 

y,(R) = e-e’2 2i [e’w(-“F( -6 + + - is, 1 - 2is, 5) 

-,-iw. <‘“+F(-6+$+is, 1+2is, t)] RFco sin(kR-kR,-(k/cc)ln2a+o) 
(13.a) 

w=argr(l+2is)+argr(-6+4-is), s = k/a, 6 = @/ct. 

Table I and Fig. 1 illustrate convergence of the iteration procedure from various 
initial approximations for the following values of the parameters: D = 0.104, 
CI = 0.67, R, = 2.09, M = 8.876. Convergence was controlled by the magnitudes of 
d,= lIq(z,)ll, g;, and p;, and iteration ended when max{p;, ,u;, 4,}510-6. The 
boundary-value problems (11) were solved using the finite-difference approximation 
of a order of accuracy of -O(h2) (h is a step of integrations) and applying the 
alternating implicit algorithm. The accuracy of calculations for the chosen difference 
net (see Table I) is about lo3 - 10-2. If necessary, accuracy can be improved by 
extrapolating the obtained values to h + 0. From the calculations performed to 
several difference nets it follows that the errors of the numerical solutions decrease 
quadratically with decreasing step of integration. As exemplified in the Table for 
k=0.08 the method is rather stable to the choice of the initial approximation. 

In the considered approach the convergence of the iteration pocedure can be 
improved either by choosing a better initial approximation to z0 or by 
appropriately changing the form of cps. To illustrate this point Fig. 1 show several 
trajectories of z projected onto the {k, S}-plane. For instance, if ‘ps = k2 -k?+ = 0, 
the problem reduces to a standard formulation in which y* and 6, are found for a 
given value of k = k,. Thus, by changing the condition cp5(z) = 0 one changes the 
properties of operator q defined by Eq. (2) where, now vi(z) = (d2/dR2) y + 
(kZ, - U)y, fi = sin(k, R, + 6), and f2 = -k, cos(k, R, + 6). However, construction 
of the iteration procedure in this case is a separate problem which is outside the 
scope of the present consideration. 

On the other hand if cps = 6 - 6, = 0 the points Z, move along the straight line 
trajectory: 6 = 6,. The scattering problem (7) is then reduced to Eq. (2), where 
fi = sin(kR, + a,), f2 = -k cos(kR, + 6,) and the solution can be found as in Sec- 
tion 2 using the continuous analog of Newton method. This choice for ‘ps 
corresponds to stating the scattering problem as an eigenvalue problem in which k2 
is found for a given 6 = 6,. Such an approach has been proposed and implemented 
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8 V. S. MELEZHIK 

FIG. 1. Illustration for convergence of the iteration procedure of finding the solution z* of the 
scattering problem (7) for different choices of ‘pS. 

for the two-channel case in [ 111, where its range of convergence has been studied 
and possible generalizations to the multichannel problem have been pointed out. 

Yet another method for solving the scattering problem as an eigenvalue problem 
has been considered in [13], where the potential: U(R), R E [IO, co) has been 
replaced by a potential with a infinite wall at R = R,( y(R,) = 0) giving rise to a 
discrete, R,-dependent spectrum of eigenvalues kz, a = 1, 2,... . The respective eigen- 
functions y,(R) contain information about the scattering phases 6 of Eqs. (1) and 
(1.b). The corresponding iteration scheme can be obtained if 

cp,(z)=d+kR,-m=O. (14) 

Indeed, in this case the boundary condition (5) reads (p3(z) = y(R,) = 0, and 
problem (7) becomes the Sturm-Liouville problem (2), with fi = 0 and f2 = 1. It is 
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therefore sufficient to calculate the scattering phase only once, after the procedure 
of solving Eq. (2) has converged (kz +n _ c4 kz) using the formula 6, = -k,R, + ~a. 
According to (14), in the course of iterations the points Z’n can move only along 
the straight line, 6, = -k, R, + ~171 as illustrated in Fig. 1. The slo 
which is the cut-off in integration of the Schrodinger equati 
required value of k .5 This approach has been applied in [ 131 t 
scattering problem with one open and many (- 300) closed channels. 

The discussed examples indicate several possibilities of improving convergence of 
the proposed method and increasing its stability to the choice of the initial 
approximation by changing the form of q5. Alternatively, the properties of the 
operator cp can be improved by an appropriate choice of the ~orrnali~at~o~ con- 
dition (p4(z) =0 (see, e.g., [ll, IS]). 

4. SOLUTION OF THE MULTICHANNEL SCATTERING PROBLEM 

Let us now consider the multichannel problem in the approach developed in Sec- 
tion 2. It will be shown below that with the choice of condition cpS = 0 given by 
Eq. (6) this approach can be easily extended to the multichannel case. 

Consider an N-channel problem with s-open channels stated as follows: At a 
given collision energy E > 0 one should find s nontrivial solutions of the system of N 
differential equations 

4?lCE> .Yi)= i 
$yi+2M 

( 
E-Ej-w 

! 1 

N 
jJz - u, y,=o (15a) 

i 

The solutions should be regular at R = 0, 

Y)Z(G Yi)=YiI.=o=O 

and have the asymptotic behavior at R + cc 

j(R)-j,(kR) - A,(kR)T in open channels (i < S) 

-w{ - lk R) in closed channels (i > s). 
(161 

Additionally the scattering S-matrix has to be found relate to the real Tmatrix by 

S=(I+iT)(l-iT))’ 

where T=lim,,, T(E, R).6 

’ Naturally, R, E [R,,, co), where the asymptotic condition y(R,) = R z R, sin(kR + 6) is valid. 
6 This formulation of the problem has been presented in [ 111. 
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In the N-channel problem (15) and (16) the complete set of solutions 

is an N x s matrix, in which the number of component of a vector-column (the 
number of the reaction channel) runs over i = 1,2,..., N, and the solution index over 
v = 1, 2,..., S. The matrix T= (tiY} is real symmetric, whereas S= { S$z) + iS~,‘)} is a 
complex s x s matrix. The notation used in Eqs. (15) is: M-the reduced mass, 
/?-the corresponding momentum in the ith channel, kf = 2M(s - Ei) > 0 in open 
channels (i < s) and kf < 0 in the closed ones (i > s), U,(R)-the potentials with the 
asymptotic behavior7 

R*U& R) -+ const. for R-+0 

U,(R) --f 0 for R-cc 

Energy E = 0 corresponds, here, to the threshold of the lower channel E,. The 
diagonal matrices j, and li, are expressed in terms of the Riccati-Bessel spherical 
functions 

.f.,j,(kA = (j,(kiR) L), fi.,(kR) = {n,(kR) 4& 

The asymptotic formulae for these functions give the asymptotic behavior of the 
solutions of system (15.a) in open channels (i d S) which is 

where 

(17) 

A;” = a,,, + (1 - 6,,) Jk,,/k, ti,(z) cos #“)(F) 

Sj”‘= 6(“)(E) Jj” + (n/2)(1 -hi”), S(“)(a) = arctg t,,,(8): 

and Ji, is the Kronecker symbol. 
Let us represent the multichannel scattering problem (15), (16) by s functional 

equations qo’“‘(z) =0 analogous to Eq. (7). From the asymptotic equality for 
R=R m-a 

‘In the next section we consider an example differing from the standard formulation 
(U&w-R,, const.), admitting, nevertheless, a correct formulation of the scattering problem [ 13, 201. 
However, in this case, taking into account strong channel coupling in the asymptotic region complicates 
the construction of the computational procedure. 
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where functions { y$} are defined by (17) one obtains the boundary con 
the scattering problem in the following form 

where a matrix notation is introduced 

,f(l’)(z, ~3~‘)) = (fjv)}ij= (B(i-s)[G,,sin(k,R- (n/2)9+ 6Cz’) 

+ (1 - 6,) cos(k;R - (n/2)4] + (1 ~ O(i ~ s))} 6,, 

#(E, P))= {.fy’),= {B(i-s)[-6,,,cos(k,R-(71/2)J+2j(l)) 

+(l -6,).sin(kiR- (7r/2)J)]k,+ (1 -O(i-s))lkil > ~3, 

and where 

Q-s) = 1, i<s 

= 0, i > s. 

In this formulation the boundary condition (P?)(E, dCv)) = 0 for the vth 
column of solutions of Eq. (15) 

contains in an explicit form only one parameter 6’“‘(a) = arctg t,,(a) for the sought 
matrix T(E). This allows one to formulate the multichannel scattering problem in 
terms of 3 functional equations c+~‘~‘(z) = 0 analogous to (7) for unknowns 
z= (y’u’, E, dCV)}. Indeed, if one defines in analogy to Section 2: 

4?(Y) = (Y, Y) - 1 = 0 (15.d) 

one obtains s nonlinear functional equations q(“)(z) = 0, v = 1, 2,... s, in 
components qj”) (I= 1, 2,..., 5) are given by Eqs. (15). Here !?= { U,( 
matrix of potentials in (15.a), k!,+ = {2M. (e, -Ei) kjii), is a fixed diagonal matrix 
(the same for all v), and the scalar product is defined by (u, y ) = 
Cr=“=, jR- [yj”‘(R)j2 dR. Th e equations can be considered separately because they 
are not coupled except for the requirement that parameter E.+ (common energy in 
all channels) is the same for all v. 

It can be easily seen, that by determining the roots of these equations, z+. = 
(Y$‘, E*, 8+?>, solves, at the same time, the multichannel scattering problem for a 
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given collision energy 8 = .s,, fixed by conditions (15.e). I.e., one obtains the 
corresponding eigenfunctions $*(E*, R) and scattering parameters c!&!‘(E*). 

Then, using the asymptotic formulae (17) the T-matrix at E = E.+ is given by 

T= {tivkd) 

y!“)(R ) sin(k R + 6’“) - (7c/2)J) (19) 
t,, = tg CP), 

tiv = y;‘,cR,m, cos 6”’ c:s(kiR, - (77/2)J)’ 
i#v 

where ki = ,/m. 
The solution of equations (p(“)(z) = 0, follows immediately from the scheme 

presented in Section 2; formulae (9))( 12) should be used with the following 
replacements: 

lJ -+ 0, fi -+ J?!“‘, f* + PI”‘, yn --+ y’“‘. u, + I$‘, 6, + q’ n 

where the matrices 0, pi’), and ?$“I have been determined above and yj,“), VP), and 
0:) are now N-dimensional vector functions. 

Having calculated the S-matrix S= (1 + iT)(l - iT)-’ one can determine the 
physical characteristics of the considered collision process: 

o,(k;) = (4n/kf)(2J+ l)(l - jSj,j2). (20) 

Here, crij(ki) is the elastic cross section in the ith channel, kj = J2M. 1s - Eil and 
E - Ei are the corresponding momentum and collision energy respectively and 
o,(ki) for i # v are the cross sections for transitions from the ith to the vth channel. 

5. NUMERICAL EXAMPLE 

Let us demonstrate the performance of the proposed method using as example 
the problem of slow collisions in a three-body system. Such collisions reflect the 
basic characteristics of the multichannel scattering [21]. This problem arises, for 
instance, in the description of various mesoatomic processes [S, 221 occurring in 
mixtures of hydrogen isotopes. In particular, the kinetic formulae describing the p- 
catalysis of nuclear fusion in such mixtures contain as parameters the cross sections 
for collisions of tritium mesic atoms in various states of the hyperfine structure with 
tritium nuclei. Both elastic and spin-flip collisions are important. Let us introduce 
the following notation for the respective cross sections gij(.s): 
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In the adiabatic representation of the three-body problem [S] reactions (21) are 
described by the system of Eqs. (15.a), with the effective potentials 

defined in [23, 131, and with the wave functions of the relative motion of nuclei 
y,(R) and yi,,(R), which in the asymptotic region R + a correspond respectively 
to the subsystems tp(tJ) + t (a) and tp(tt) + t (b). 

The problem is characterized by strong coupling of channels in the kimit 

R+ co: U,(R)= 

Its presence does not prevent a correct formulation of the scattering pro 
it leads, however, to a rather complicated boundary condition at R = 
consider the region of low collision energies (E < E2aj 

cks(tl~ F? Ids, spin-flip transitions are allowed. In this case (s = 1, 2) the boun- 
dary conditions (~4”) = 0 are given by Eq. (15.b) and matrices of coefficients p(V) and 
p$“) assume the form 

where 

(jy(&, P’)},= FjlY’ c&j, i = Pa, 2a,..., N- 1 and v = la 

= a,, i = lb, 2h,..., N 

(f$y&, 6’“‘)},= --&;’ 6,, 
69) 

i = la, 2a,..., N-landv=In 

= Ikil hj> i = lb, 2b,..., N 

F~~)=8(i-s)[6,sin(k,R-((n/2)J~6’~))+(1 -d,)cos(k,R-(n/2)J)] 

+ (1 -B(i-s))[6, cos(kiR- (7~/2)J+6”‘)- (1 -6,,) sin(k,R- (QjJj 

s=2 

where i = la, lb, 2a ,..., N and v = la, lb. 
In the derivation of these formulae only the leading terms of the asym 

expansions of y,(R) and yib(R) [20] were retained. However, to increase accuracy, 
in the actual numerical calculations, terms proportional to l/R have been also 
included. 
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Another feature is the necessity of taking into account a huge number of closed 
channels ( - 300) which significantly influence the magnitude of the cross sections 
(21) c131. 

Figure 2 presents the calculated S-wave cross sections (21) an 
corresponding T-matrix elements and demonstrates the dependence on 
of solved equations N of the system (15.a). Number N = 2 corresponds to inclusion 
of one shell of the discrete spectrum of the adiabatic basis, N = 20 to three such 
shells and N = N,,, = 260 to three shell of discrete and four shells of the continuous 
spectrum. The structure of the matrix of potentials in Eq. (15~) used in the 
calculations is as in Cl]. Equation (1.5) for N = 20 was solved using the 
calculational procedure given by Eqs. (9)-(12). As the rmmerical method is suf- 
ficiently stable to the choice of the initial approximatio the latter has been taken 
in a simple form yiO = y, di,, where y,,(R) correspo s to the one-channei case 
(Sect. 3). The solution of (15) at N= 20 was used as initial a~~rox~~ati~~ for 
N= N,,,. In this case, cp:,(z,) in Eq. (8) was replaced by cp:,(zO) which, as men- 
tioned in Section 2, led to significant shortening of computation tim 

The a6hieved accuracy of the calculations which is about - 5 % is 
the approximation order of the difference net, by the cut 
by the neglected contributions from the higher states of t 

0.1 0.2 0.3 0.4 %,eV 

FIG. 2. Calculated cross sections for reactions (21), $, J= 0. The curves correspond to taking into 
account N = 2, 20 and 260 equations in the system of equations (15.a). Ca!cuiations were carried out on 
difference net with 330 nodes with step: 0.1 (0.1) 20 (1) 150. 
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FIG. 3. Calculated elements of T-matrix, t;), I%’ delined as in Fig. 2 

calculations finite difference approximation of the order l/qp) - p’“‘/l- O(h’) was 
used, however, if necessary the algorithm can be modified to admit accuracy up to 
-O(h4) [P-I]. The contribution from the neglected states of the adiabatic basis 
(N -+ co) can be estimated as in [25]. The results for N= 2 coincide within a 
relative accuracy 1V3 - 10-4, throughout the whole energy region under con 
sideration, with the results obtained using the phase-function method [26] and, for 
energies below threshold E < AEhfs, with the results of 1131, wbere s = 4 and 
w - 300. 

As is seen an Fig. 2, the cross sections a&s) vary sig~i~~a~t~y with energy at 
sGQ.3 eV. We note also the threshold singularity at E =AEhk=0.241 eV; ‘c&at is, 
clearly pronounced and surviving as N -+ CC. 

6. CONCLUSION 

The method developed above enables one to solve the multicba~ne~ scattering 
problem with a large number of closed channels ( - 300). The scattering pro 

581!65/1-2 
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represented in the form of a nonlinear equation which can be solved using the con- 
tinuous analog of Newton method. The latter has been verified in many 
applications, and conditions of its local convergence have been theoretically 
examined [3]. 

An important peculiarity of the given approach is, in our opinion, that it allows 
us to solve the multichannel scattering problem with a strong, possibly long-range, 
coupling of channels without transforming the initial system of equations into a 
form suitable for numerical integration [6, 81. It also does not require a particular 
organization of calculation in the asymptotic region near singularity R, -+ co [26], 
unlike the standard straightforward integration technique. All this is essential for 
numerical solution of the multichennel scattering problem with a large number of 
closed channels and long-range potentials. 

The method provides a common description of different phenomena (resonances, 
threshold behaviour, Ramsauer effect, etc.) in a wide range of energy and opens a 
possibility of examining the influence of the closed channels on their physical 
characteristics. It can be used most effectively at low collision energies where only a 
few partial waves contribute. The calculations performed for inelastic collisions 
involving three charged particles demonstrate the applicability of the method. 

The author is deeply indebted to Professors L. I. Ponomarev and I. V. Puzymin 
for stimulating discussions and guidance, and to his colleagues, Drs. M. P. Faifman, 
A. Gula, M. Kaschiev, L. I. Men’shikov, L. N. Somov, S. I. Vinitsky, and J. Woz- 
niak for helpful conversations and assistance in completion of this work. 
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